

Maths for parents

The aim of this session

- To share how we teach maths in school
- To outline our National Curriculum expectations in maths
- To offer strategies you may want to use when supporting your children at home

Quality First Education Trust

Relentless drive for improvement, excellence and equality

Aims

Our aim is that all children and adults:

Are safe
Are excellent learners

Have excellent social and emotional skills

Achieve and succeed

What, why, where, when and how...

What approach we

 use?
Why we use it?

Where it happens?
When it happens?
How it happens?

WHAT?

- Singapore mastery approach to maths teaching Concrete-Pictorial-Abstract approach
- Problem solving context
- Textbooks (and workbooks)

WHY?

- PISA results (OECD) and TIMSS scores

 EEF recommendations (Sutton Trust)| Maths | |
| :---: | :---: |
| 2015 (2012) | |
| Rank | Country |
| 1 (2) | Singapor |
| 2 (3) | Hong Ko |
| 3 (6) | Macao (${ }^{\text {a }}$ |
| 4 (4) | Taiwan |
| 5 (7) | Japan |
| $6(1-a s$
 Shanghai) | Beijing-S |
| 7 (5) | Cnuth Krar | Top 20 in mathematics on 2018 Pisa tests

Improving Mathematics in Key StagesTwo and Three - Recommendations Summary

Concrete-pictorial-abstract approach

Concrete - The DOING stage

A child is first introduced to an idea or a skill by acting it out with real objects.
This is a 'hands on' component using real objects and it is the foundation for conceptual understanding.

Quality First Ed

Concrete-pictorial-abstract approach

 pictorial - The SEEING stageA child has sufficiently understood the hands on experiences, has performed and can now relate them to representations, such as a diagram or picture of the problem.

tens	ones

Quality First Education Trust

Concrete-pictorial-abstract approach

Abstract - The SYMBOLIC Stage

A child is now capable of representing problems by using mathematical notation, for example:

$$
21+9=30
$$

What? Textbook \& workbook

chor task

problem that promotes discussion.
Working as a class, it gives the opportunity to address misconceptions and to challenge and support through questioning.

Guided practice

A series of problems for children to work through in pairs, giving opportunity for evaluating children's learning.

Independent work
To assess children's understanding of the learnt concept.

Anchor task - 'Explore' problem that promotes discussion

Measuring Area

In Focus

Make different figures using all 5 pieces.

What the lesson looks like
 Explore'- an anchor problem that promotes discussion:

- A whole class 'real life' problem
- Tackled in a group or with partners
- Using C-P-A approach - lots of manipulatives
- Takes up to 20 minutes
- Lots of paired or group discussion
- Different strategies may be used
- Tackles misconceptions

Find the area of each figure. \qquad has an area of 1 square unit.

What the lesson looks like

ruided practice: a series of problems for children
to work through in pairs with teacher guidance.

- Usually tackled with partners
- Takes up to 20 minutes
- Use of manipulatives to support and challenge
- Use of pictorial representations
- Use of the abstract
- Progression of questions
- Time to further demonstrate and practice the use of procedure, method or strategy

Independent work assess children's understanding of the learnt concept.

Name: \qquad Class: \qquad Date: \qquad

Worksheet 4
Measuring Area
(1) Find the area of each figure. Each \square has an area of 1 square unit.

(a)

	Area
Figure A	square units
Figure B	square units
Figure C	square units
Figure D	square units
Figure E	square units
Figure F	square units
Figure G	square units
Figure H	square units

(b) Which figure has the largest area? \square
Shade more or or so so that each figure has an area of 12 square units.
(a)

(b)

What the lesson looks like lependent work: To assess children's inderstanding of the learnt concept.

- Using workbooks
- Takes up to 20 minutes
- Manipulatives available to support
- Use of pictorial representations encouraged
- Use of the abstract expected
- Tackled independently
- Time to further demonstrate and model the use of procedures (if needed)
- Additional activities to deepening (challenge) or consolidate (reinforce)

Quality First Education Trust

How?

Our maths lessons:

Trigger prior learning - recap/linking previous knowledge

- Factual fluency - recall of existing knowledge, aiming for rapid recall of known facts
- Anchor task - class problem with a 'live’ context
- Guided practice - paired practice using progressively harder questions
- Independent - series of questions moving into unfamiliar (+ gonsolidation or deepening tasks)

Where? When?

Reception classes use the same approach in teaching maths in their new curriculum

- Years 1 to 6 use the Singapore structured textbook and workbook

70-42		
Athrin turm	tpthalam	funmattern
Hook A: Unit 1 - Mumbers to 160	Unit - - Mass	Unit 13 - Frocfions \|may dart Spring lemil
Urit 2 - Addifion and whbloction	Unit7-Temperalue	Unit 14-Time
	Џrit S-Pichure Grophs	Contoldatent thape, Ime and money
Urit 7 - Mutipligetion 2 : 510	problems	
Urit 4 - Mulfiplegtion 5 divion 2.5 and 10	Unit 10-Money	
Urit 5 - Length	Unit 11 - Two dimernional thapes	
Unit s - Mass Conlinued in Auhumn term]	Unit 12- Three dimertional ahapes	
	Dook It: Unit 15 - Volume	
	Connoldatione Tirre	

- Daily maths lessons

How?

Year 2 maths overview 2022-23

Quality First Education Trust

Autumn 1:35 lessons
1 Chapter 1: Numbers to 100

Lesson 1: Counting to	Lesson 1: Counting to
100 over two days	100 over two days

100 over two days
To count numbers up to 100 using concrete objects: counting up by ones and tens.

100 over two days

Lesson 2: Place Value over two days To understand each digit in a number has its own value.
Lesson 2: Place Value
over two days

Lesson 3: Comparing Numbers To compare numbers using placevalue knowledge from previous lessons.

2 Chapter 1: Numbers to 100

Lesson 4: Number Bonds Lesson 5: Number

 To use the number bond strategy to deepen understanding of place value. Patterns over two daysTo count in ones and tens; to introduce boundary crossing using tens and ones.

Lesson 5: Number Patterns over two days

Lesson 6: Number Patterns over 2 days To recognise and describe patterns with more complex numbers, in particular 3 and 5 .

Chapter 2: Addition and subtraction

Lesson 1: Simple Adding Lesson 2: Simple Adding To add a single-digit number to d doubledigit number without regrouping the ones.

To add tens by recognising its relationship to adding ones.

Lesson 3: Simple Adding

 To add double-digit numbers where one is a multiple of 10 .Lesson 4: Simple Adding over 2 days
To add with tens and ones where the units are both more thano.

How?

- Training for ECTs and new experienced teachers before they start
INSET and SMs - differentiated questioning, maths' mindset, use of C-P-A, plannning, supporting SEND children and struggling learners
- Maths team - maths leaders, advocates and champions who can offer support and advice
- Virtual planning in year groups across the Trust - Trust overview
- Director of Maths 1:1 support - observe, model, coach, coverage planning, guided lessons,
- Guidance and support - overview of yearly and termly topics, coverage mapping to ensure home learning is revisited before new learning, lesson structure, lesson timings, support for children with special needs, home learning video library
- Money - textbooks, workbooks, manipulatives, online resources

What we have to do! National Curriculum for maths

Quality First Education Trust

National Curriculum - Maths

The National Curriculum for Mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.

National Curriculum - Maths

The National Curriculum for Mathematics aims to ensure that all pupils:

- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language.
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

National Curriculum - Maths

The National Curriculum for Mathematics

The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace.

- Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content.
- Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.

Maths in the early years

Children should be able to count confidently, develop a deep understanding of the numbers to 10 , the relationships between them and the patterns within those numbers.

Develop a secure base of knowledge and vocabulary from which mastery of mathematics is built.

Maths in the early years

evelop spatial reasoning skills across all areas of mathematics including shape, space and measures.

Develop positive attitudes and interests in mathematics, look for patterns and relationships, spot connections, 'have a go', talk to adults and peers about what they notice and not be afraid to make mistakes.

Key stage 1

Pupils develop confidence and mental fluency with whole numbers, counting and place value.

Working with numerals, words and the four operations, including practical resources [for example, concrete objects and measuring tools].

Develop ability to recognise, describe, draw, compare and sort different shapes and use the related vocabulary.

Describe and compare different quantities such as length, mass, capacity/volume, time and money.

Key stage 1

By the end of year 2, pupils should know the number bonds to 20

Be precise in using and understanding place value.
Read and spell mathematical vocabulary, at a level consistent with their increasing word reading and spelling knowledge at Key stage 1.

6 tens
4 ones

Lower Key Stage 2

Develop ability to solve a range of problems, including with simple fractions and decimal place value.

- Increasing accurate and develop mathematical reasoning to analyse shapes and their properties, and confidently describe the relationships between them.
- Use measuring instruments with accuracy and make connections between measure and number.
θ

Lower Key Stage 2

Pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value.

- Pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers.

Lower Key Stage 2

By the end of year 4, pupils should have memorised their multiplication tables, and associated division facts, up to and including the $12 \times$ tables (They are tested! MTC, June 2022 onwards)

- Show precision and fluency in work
- Read and spell mathematical vocabulary correctly and confidently, using their growing word reading knowledge and their knowledge of spelling.

Quality First Education Trust

Upper Key Stage 2

Pupils extend their understanding of the number system and place value to include larger integers (whole numbers)

- Develop the connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio.

Ratio	Decimal	Percent
$\frac{3}{10}=\frac{30}{100}$	0.30	30%
$\frac{1}{2}=\frac{50}{100}$	0.50	50%
$\frac{3}{4}=\frac{75}{100}$	0.75	75%

Upper Key Stage 2

Develop ability to solve a wider range of problems, including complex problems.

- Pupils are introduced to the language of algebra as a means for solving a variety of problems.
- Pupils classify shapes with increasingly complex geometric properties and that they learn the vocabulary they need to describe them.

Upper Key Stage 2

By the end of year 6, pupils should be fluent in written methods for all four operations, including long multiplication and division, and in working with fractions, decimals and percentages

- Pupils should read, spell and pronounce mathematical vocabulary correctly.

National Curriculum - maths

The National Curriculum for Mathematics reflects the mportance of spoken language and all pupils mastering maths:

- developing mathematical vocabulary
- presenting a mathematical justification, argument or proof
- articulating their thinking
- building secure foundations by using discussion to probe and remedy their misconceptions
- all pupils mastering the content taught each year and discourages the acceleration of pupils into content from subsequent years.

What can you do?

Quality First Education Trust

Mastering Number Ideas

How many ways can we partition the number 674?

- 674 is made of 6 hundreds, 7 tens and 4 ones
- 674 is also made of 67 tens and 4 ones
- 674 is also made of 6 hundreds and 74 ones
- 674 is also made of 674 ones.

AT HOME: What amounts can we make 630 from?

- 704
- 867

Mastering Number

Part-whole model - from Reception to Year 6

Quality First Education Trust

Mastering Number Ideas

ree pupils estimate the answer to the sum $4243+1734$

Andrew says, 'To the nearest 100, the answer will be 5900.'

Bob says, 'To the nearest 50, the answer will be 6000.' Chris says, 'To the nearest 10, the answer will be 5970.'

Do you agree with Andrew, Bob or Chris?
Explain your reasoning?
AT HOME: Estimate, approximate, round to the nearest...

Quality First Education Trust

Mastering Number Ideas

- 'When I count in tens from any number the ones digit stays the same.' Do you agree? Explain your reasoning.
- AT HOME: I am going to count backwards in twos from 20. How many steps will it take to reach 0 ? Convince me.

Mastering Number Language

 Sam and Tom have $£ 67.80$ between them. If Sam has $£ 6 \cdot 20$ more than Tom, how much does Tom have?

$$
£ 67.80-£ 6 \cdot 20=£ 61 \cdot 60
$$

$$
£ 61 \cdot 60 \div 2=£ 30 \cdot 80
$$

Tom has $£ \mathbf{3 0 . 8 0}$

Mastering Number Ideas

- Year 1 = counting in $2 s, 5$ s \& 10s from different multiples
- Year 2 = fluent in multiplication tables for $2 s, 5 s$ \& 10s
- Year 3 = recall \& use multiplication \& division facts for 3s, 4s \& 8s multiplication tables
- Year 4 = recall multiplication \& division facts for multiplication tables to $12 \times 12(0,6,7,9,11,12)$

From June, 2022 onwards:
National test: (MTC) Year 4 multiplication tables check Quality First Education Trust

Mastering Number Ideas

AT HOME:

- Baking
- Laying the table

- Skip counting 4, 8, 12, mm-mm 20, 24
- How many different ways can you calculate 7×6 ? $7 \times 6,6 \times 7,5 \times 6+1 \times 7$, double 3×7
- If you know 2×3, what else can you work out from that fact?

Quality First Education Trust

Mastering Money Ideas

AT HOME:

Can you show how to make ...p? How many ways can you make....p? How do you know?

Which would you rather have, $3 \times 50 \mathrm{p}$ coins or $7 \times 20 p$ coins?
Explain why.

Quality First Education Trust

Mastering Ratio and Money Ideas

You can buy 3 pots of banana yoghurt for $£ 2 \cdot 40$. How much will it cost to buy 12 pots of banana yoghurt?

A child's bus ticket costs $£ 3 \cdot 70$ and an adult bus ticket costs three times as much. How much does an adult bus ticket cost?

Quality First Education Trust

Mastering Time Ideas

Wake up at...
School starts at...

Bedtime at...

These clocks have only one hand, but can you work out a time that each could be showing?

Quality Fir:

Mastering Fraction \& Percentage Ideas

Last month your sister saved a quarter of her $£ 10$ pocket money. She also saved 15% of her $£ 20$ birthday money. How much did she save altogether?

Dad ate half the pizza and your brother ate half of what was left. What fraction is left for us?

Mastering Measurement Ideas

My cousin, Sarah, is $\mathbf{0 . 2} \mathbf{~ m}$ taller than me.
My sister is $\mathbf{1 5} \mathbf{~ c m}$ taller than Sarah.
I'm one and a quarter metres.
(Bar models)

- Who is the tallest person?
- What is the difference in height between the tallest and the shortest person?

Supporting your children

- Ask your child to show/teach you and explain how they solve the problem.
- If they get stuck, don't rush them.
- Praise effort and reassure them that they'll get it with practice.
- Ask them if they can think of more ways to solve the problem.
- 'Show your thinking in other ways.'

Supporting your children

- Find opportunities to solve maths problems everywhere.
- Take real-life situations and look for patterns, connections and things that can be matched.
- Play games that involve numbers.
- Show them that maths is fun and isn't only reserved for the classroom.

